

INTRODUCTION

King of spices (pepper account for 37 % of World total spice trade).

Commercial pepper is dried berries of woody perennial evergreen climbing vine.

Production:

- · Average yield 0.425 t/ha.
- Under good management 1.5 t/ha
- Under research condition 1.8 2.5 t/ha from high yielding cultivars/ selections
- Extent 31000ha Exports over 12000mt

BASIC CONCEPT OF IPNM

- Limit the unfavorable exploitation of Soil fertility and Plant nutrients.
- Maintenance and possible improvements of soil fertility status.
- Sustaining the desired crop productivity through optimization of the benefits from all possible sources of plant nutrients in an integrated manner.
- Minimize the possible environmental hazards.
- Minimize cost of production.

IPNM WHY?

- Growing demand and consumption of fertilizer
- High cost
- Unavailability
- · Imbalance nutrient contents
- Neither mineral fertilizer nor organic fertilizer alone can achieve the production sustainability
- To minimize possible environmental hazards

NATURE OF SPICES CROPPING SYSTEMS

- Mainly Small holdings with mixed crops
- Large scale plantations of Cinnamon, Pepper, Cardamom
- Sensitivity of investment with price fluctuation
- Except Cinnamon, association of Shade/Support trees

 Agro-forestry
- Perennial crops with one or two harvests/yr
- Considerable Bio mass inputs from shade/support/companion trees Nutrients, Mulch, OM, Minimize runoff, Microbial activities?

Cropping System -

- Most of the EACs are cultivated as Mixed gardens or Intercropping resembling an Agro-forestry system, except Cinnamon
- Sharing of resources between or among the crops are optimum.
- The systems have Competitive as well as Beneficial effects
- This will enable to go for resource sharing cropping systems such as "Organic farming"

NUTRITION OF PEPPER

- Chemical fertilizers
- Green manure
- Organic manures
- Compost
- Bio fertilizers

Fertilizer management

Early stage of both rainy seasons (2 splits/year) Ring application –15 cm away from base In sloping lands – semi circular application only upper side of the base

Fertilizer mixture

1. Urea - 4 (14% N) 2. ERP - 5 (11% P₂O₅) 3. MOP - 3 (14% K₂O) 4. Kieserite - 1 (2 % MgO)

Rate of application

 Age
 Amount - g/vine/year

 1st year
 250 g

 2nd year
 500 g

 3rd year & onwards
 700 g

Black Pepper: a typical Agroforestry system

 Pepper always grown with a support tree, mainly a legume (Gliricidia, Erythrina etc.)

 Biomass from support/shade tree range from 10-20Mt/yr

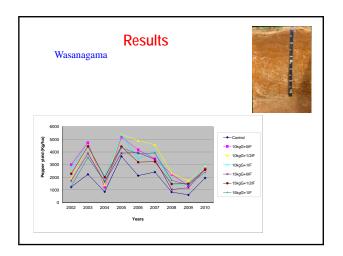
A well pruned Pepper field

- Provide adequate sunlight
- Minimize competition
- Supply a large quantity of quality green manure
- Recycle plant nutrient
- Reduce moisture losses
- Minimize disease incidence
- Arrest soil erosion
- Sustain productivity

Effect of pruning intervals on biomass production of *G. sepium* & yield of Pepper (kg/ha/2yr)

Treatment	Leaf	Tender	Hard	Pepper
(pruning interval)		stems	stems	yield
Every month	5850a	2105a	-	4538a
Every two month	7960 ^{ab}	3978a	-	3027 ^{ab}
Every three month	12765bc	6834 ^b	1480a	2700ab
Every four month	14517°	8577b	7259 ^a	1700 ^b
Every five month	14823 ^c	7041 ^b	17977 ^b	1650 ^b
Every six month	893ab	2357a	14428b	1320 ^b

		Leaf	f	Tender stem		Leaf /Tender stem			Mature stem			
	N	P	K	N	P	K	N	P	K	N	P	K
T1	235	42	193	56	13	116	291	55	309	-	1-	T-
T2	304	22	205	144	20	183	448	42	388	-	-	-
Т3	451	32	290	227	15	151	678	47	441	22	2	24
Т4	491	25	306	120	15	124	611	40	430	99	12	122
T5	474	24	240	99	10	87	573	34	327	259	20	232
Г6	249	8	126	33	3	29	282	11	155	196	17	189



Impact on Soil Chemical Properties Wasanagama (IBL)

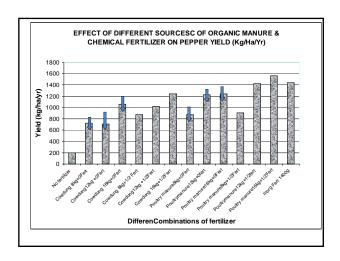
Treatment	Total N %	Exch. K (mg/kg)	Exch. P (mg/kg)	Exch. Mg (mg/kg)	O.C. %
Control	0.18	246.0	4.99	257.3	0.99
10GM 0 Fert.	0.30	499.0	6.62	321.0	1.19
10GM 1/2 Fert.	0.23	588.7	8.77	211.7	1.20
10GM 1 Fert.	0.29	843.7	14.02	391.3	1.30
15GM 0 Fert.	0.29	684.0	10.10	278.3	1.50
15GM 1/2 Fert.	0.23	688.7	8.88	306.7	1.59
15GM 1 Fert.	0.36	867.3	11.46	357.3	1.49
LSD (<i>P=0.05</i>)	0.16	227.8	4.25	152.8	0.56
CV%	36.91	20.29	20.29	28.32	23.76

Impact on Soil Chemical Properties Matale

Treatment	Total N %	Exch. K (mg/kg)	Exch. P (mg/kg)	Exch. Mg (mg/kg)	O.C %
Control	0.16	301	7.0	487	1.08
10GM 0 Fert.	0.23	505	11.0	584	1.81
10GM 1/2 Fert.	0.28	558	12.0	586	1.83
10GM 1 Fert.	0.27	545	11.7	557	2.09
15GM 0 Fert.	0.22	492	8.7	559	2.80
15GM 1/2 Fert.	0.26	545	15.5	585	2.05
15GM 1 Fert.	0.25	644	17.0	600	1.81
LSD (P=0.05)	0.02	204	4.0	111	0.19
CV%	5.83	30.81	21.55	11.08	5.17

Impact on Soil Chemical Properties Etulgama

g/kg) (mg/kg)
1.8 96.6 2.17
5.2 339.0 2.90
10.5 364.0 2.88
12.6 348.0 2.55
10.0 336.2 4.20
15.0 334.7 2.87
17.7 438.4 2.68
5.59 121.33 1.08
9.14 21.15 21.16


Effect on weed growth – Grasses

Treatment	Cou	int 1	Cou	int 2
	Count Dry	Wt.(g /m²)	Count Dry	Wt. (g /m²)
Control	45.33	17.08	46.67	15.85
10GM 0Fert	16.33	5.34	28.67	9.27
10GM 1/2 Fert	21.33	4.17	30.33	5.41
10GM 1Fert	23.00	10.6	22.00	13.02
15GM 0Fert	26.50	7.34	28.67	7.74
15GM 1/2 Fert	27.33	11.04	14.00	8.05
15GM 1Fert	23.33	9.31	22.00	8.16
Significance	**	**	**	**
LSD P=0.05)	25.77	8.38	18.88	7.32
CV%	23	26	31	28

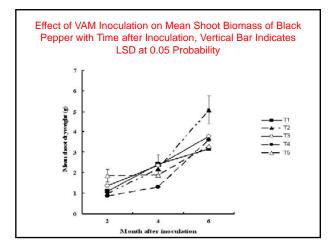
Effect on Weed Growth							
	Br	oad Lave	es				
Treatment		Count 1	Count 2				
	Count	Dry Wt.(g/m²)	Count D	ry Wt.(g/m²)			
Control	71.00	21.11	38.66	29.09			
10GM 0Fert	17.33	4.40	19.67	5.90			
10GM 1/2 Fert.	13.67	11.89	16.33	10.72			
10GM 1Fert	27.00	20.83	13.33	9.07			
15GM 0Fert	13.67	6.93	12.33	5.08			
15GM 1/2 Fert	8.00	7.31	8.67	0.66			
15GM 1Fert	6.67	15.86	16.67	8.20			
Significance	***	***	**	**			
LSD (P=0.05)	20.73	11.01	19.23	9.32			
CV%	26	31	28	24			

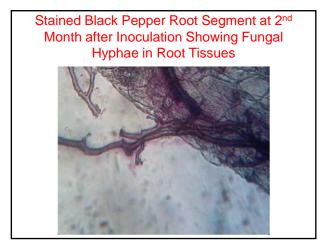
Use of Animal Waste/Organic Manures in Pepper

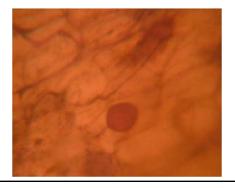
- Cattle manure (8,12,16 kg/vine/year)
- Poultry manure (8,12,16 kg/vine/year)

What can be Used for Organic Crop Production?

- Litter, Crop residues or Pruned biomass, animal waste and compost as a source of plant nutrients
- Biomass as a soil amendments to minimize soil degradation & to control soil borne pathogens
- Overall sustainability of the system due to diverse income; reduce risk







Treatment code	Inoculum	Quantity of potting	Mean number of	Mean VAM Spore Density
	Level (g)	mixture (g/pot)	spores/ pot	(No. of spores/g of potting mixture)
71	25	875	265	0.3
Γ2	75	825	795	0.88
3	150	750	1590	1.77
4	300	600	3180	3.53
5-Control	0	900	0	0

Stained Black Pepper Root Segment at 4th Month after Inoculation Showing Vesicle Formation (Indicated by an arrow) within Root Tissues

Latest Approach on Soil Fertility Management for Pepper

- Use of Integrated approach using Mineral, Organic & Bio fertilizers, based on quantified research data.
- Recycling of crop wastes and shade tree loppings to provide nutrient and to improve soil chemical, physical & biological properties.
- Use of local fertilizer sources to the extent possible (ERP, Dolomite etc.)
- Development of site specific fertilizer recommendations based on on-farm data and soil analytical data.

Disease in Black Pepper

Slow wilt disease in Black Pepper -

- Proper soil conservation, Incorporate organic matter to the soil, Make soil mounds to encourage root development, soil moisture
- Control mealy bugs etc.

 Make soil mounds at the base of the plant, Add Gliricidia leaves or any organic matter to the plant.

Quick wilt Disease in Black Pepper -

- Cultural Improve drainage, pruning, remove & destroy infected plants
- plants.

 Biological Use of Antagonistics fungi such as *Trichoderma* sp.

 Resistant cultivars –Select resistant/Tolerant cultivars from local germplasm.

 Use cuttings only from healthy mother plants.
- Abiotic Incorporate organic matter to the soil, Make soil mounds to encourage root development, soil moisture preservation.

Prevent Nursery Diseases by Solarization of the Potting Mixture

- · Re use the wasted potting mixture
- Good root system
- · Good plant growth Cheap, safe & simple

The Organic spices & beverage crop production Export Agriculture Crops have a growing demand for "Organic products" Potential exist due to high biomass found within the system & low pest and disease incidence

- What DEA has done to promote Organic farming?

 1998 introduction of Organic farming Promotion scheme

 Technology Development & Dissemination (Organic fertilizer, Bio/Organic pesticides, GAP, Record keeping etc.)

 Assist to get the certification

 Market linkage & promotion

Over 100 organic villages were established and 48 of them got the certification

- What else needed?
 Certification process and Marketing system should be streamlined to be benefited the Producer.
 Post Harvest handling should pay more attention.
 Market promotion in developed world should be strengthened.

